ЛАЗЕРНЫЕ И ОПТИЧЕСКИЕ ИЗМЕРЕНИЯ

doi: 10.51639/2713-0568_2023_3_1_74 УДК 551.510 ГРНТИ 47.35.31 ВАК 01.3.19

Лидарные измерения концентрации молекул фторгидрида в атмосферном пограничном слое

^{1*} Шеманин В. Г., ² Воронина Э. И., ² Авдонькин А. С.

¹ Филиал Белгородского государственного технологического университета им. В. Г. Шухова в Новороссийске, 353919, Новороссийск, ул. Мысхакское шоссе, 75 ² Новороссийский политехнический институт (филиал) Кубанского государственного технологического университета, 353900, Новороссийск, ул. К. Маркса, 20

e-mail: * shemanin-v-g@nb-bstu.ru

Выполнена оценка возможности измерения концентраций молекул фторгидрида в диапазоне $10^{13}...10^{17}$ см⁻³ в атмосфере лидаром комбинационного рассеяния света при зондировании на расстояниях до 1,5 км. Получено, что на длине волны лазерного излучения 405 нм на расстоянии зондирования 100 м можно получить минимальное значение концентрации молекул фторгидрида 1,88·10¹³ см⁻³, а для расстояния зондирования 1500 м – уже 7,64 10¹⁵ см⁻³ для нашего варианта лидара. Кроме того, на этой длине волны лазерного излучения за 100 с можно измерить концентрацию на уровне 1,5·10¹⁴ см⁻³ на расстоянии зондирования до 600 м, а для измерения такой же концентрации на расстоянии 1500 м требуется почти 17 мин.

Ключевые слова: лидар комбинационного рассеяния света, молекула фторгидрида, концентрация, время измерения, расстояние зондирования.

Введение

Загрязнение атмосферного воздуха молекулами фторгидрида представляет большую проблему в связи с его высокой токсичностью и низким уровнем предельно-допустимых концентраций (ПДК) – $0,02 \text{ мг/m}^3$ или порядка $1.5 \cdot 10^{14} \text{ см}^{-3} [1-3]$. Разработка новых дистанционных методов измерения концентрации молекул HF с таким уровнем концентраций в атмосферном пограничном слое на базе лидара комбинационного рассеяния света требует оценки точности решения такой измерительной задачи. Теоретический анализ методов лазерного зондирования молекул углеводородов в атмосфере был выполнен в работах [1, 4–8] и было получено, что лидар комбинационного рассеяния света может использоваться для дистанционного измерения концентрации молекул на уровне десятков и сотен ПДК.

В работах [9, 10] было предложено лидарное уравнение для комбинационного рассеяния света газовыми молекулами в атмосфере в направлении назад с учетом конечной ширины линии генерации. Эти работы показали, что учёт конечной ширины линии генерации реального лазера, полуширин полос комбинационного рассеяния света и аппаратной

функции лидара позволяет уточнить решение такого лидарного уравнения [11], особенно для случая малых концентраций исследуемых молекул [10].

Поэтому целью работы является оценка диапазона концентраций и времени измерения таким лидаром комбинационного рассеяния света молекул фторгидрида в атмосферном пограничном слое на уровне концентрации порядка ПДК и выше в диапазоне высот до 1,5 км в режиме синхронного счёта фотонов и выбор оптимальных и параметров лидара комбинационного рассеяния света.

Экспериментальный лидар комбинационного рассеяния света

Оптическая схема лидара комбинационного рассеяния света для решения такой задачи построена на основе [1, 7] и приведена на рис. 1.

В качестве зондирующего излучения используется излучение второй гармоники YAG Ndлазера с накачкой полупроводниковым лазером с длиной волны 532 нм и полупроводниковых лазеров с длинами волн 405 и 650 нм с длительностью импульсов 10 нс и энергиями в импульсе до 1 мДж при частоте следования лазерных импульсов f до 1 МГц [6]. Излучение лазера 7 направлялось вдоль оси приёмного телескопа как и в [7], а излучение комбинационного рассеяния молекулами фторгидрида в атмосферном пограничном слое в направлении назад собиралось приёмным телескопом типа Ньютона со сферическим зеркалом 1 диаметром 400 мм и фокусировалось линзовым объективом 9 в волоконный ввод 2 микроспектрометра 8 типа FSD-8, работающего на линии с ПК.

Часть лазерного излучения направлялось стеклянной пластиной 4 через интерференционный светофильтр 5 на фотодиод 6, напряжение U_0 с которого записывалось платой сбора данных в ПК, для контроля энергии лазерного импульса и формирования начала отсчёта времени измерения.

Лазер лидара будем характеризовать числом фотонов n_0 в импульсе посылаемого в атмосферу лазерного излучения длительностью τ_0 , а линию генерации лазера будем считать Гауссовой с максимумом на частоте v_0 и полушириной Γ_0 . Тогда число фотонов

n(v,z) излучения комбинационного рассеяния света исследуемыми молекулами фторгидрида с концентрацией N(z) на фотоприёмнике лидара можно получить из лидарного уравнения в направлении назад в режиме счёта фотонов в виде [9, 10] как интеграл в интервале от $(v_0 - \Gamma_0)$ до $(v_R + \Gamma_a)$ [7]:

$$n(v,z) = n_0 c \tau_1 G(z) f t_d S_0 N(z) (d\sigma / d\Omega) \int_{v_0 - \Gamma_0}^{v_R + \Gamma_R} T_0(v_0,z) \cdot T(v_R,z) \cdot \Phi(v) A(v) dv / 2z^2$$
(1)

где n(v,z) – число фотонов, зарегистрированное фотодетектором лидара на частоте v_R комбинационного рассеяния света с расстояния зондирования z; n_0 – число фотонов на частоте v_0 лазерного излучения. Кроме того, обозначены S_0 – площадь приемной апертуры телескопа; G(z) – геометрическая функция лидара [1, 12]. Эта функция полностью определяется параметрами оптической схемы лидара и количественно характеризует степень виньетирования потока рассеянного назад излучения, поступающего на фотоприёмник из рассеивающего объёма атмосферы с расстояния z [12] и лежит в пределах 0 < G(z < 1). Следующие величины N(z) – концентрация исследуемых молекул; t_d – время измерения или накопления сигнала и $(d\sigma/d\Omega)$ – дифференциальное сечение комбинационного рассеяния света исследуемыми молекулами: два сомножителя - пропускание атмосферы – равны соответственно [1, 12]:

$$T_0(v_0, z) = \exp[-\int_0^z \alpha(v_0, r) dr] \prod_{\mathbf{H}} T(v_R, z) = \exp[-\int_0^z \alpha(v_R, r) dr]$$

где $\alpha(v_0,r)$ и $\alpha(v_R,r)$ – коэффициенты ослабления на частотах лазерного излучения и комбинационного рассеяния света молекулами фторгидрида. Учитывая эти выражения, перепишем уравнение (1) в виде:

$$n(v,z) = \frac{c\tau_0}{2z^2} n_0 S_0 G(z) N(z) ft_d (d\sigma/d\Omega) \int_{v_0-\Gamma}^{v_R+l_a} \Phi(v') \exp[-\int_0^z \{\alpha(v_0,r) + \alpha(v_R,r)\} dr] A(v') dv'$$
(2)

где $\Phi(v)$ – функция распределения фотонов лазерного излучения в линии генерации [13] и для Гауссовой формы этой линии может быть представлена в виде

$$\Phi(v) = \frac{1}{\sqrt{2\pi}\Gamma_0} \exp\left\{-(v - v_0)^2 / (2\Gamma_0^2)\right\}$$
(3)

Кроме того, будем считать, что аппаратная функция или спектральный коэффициент пропускания приемной системы лидара A(v) [5, 7, 12] имеет Лоренцеву и настроена точно на частоту v_R полосы комбинационного рассеяния света молекулами фторгидрида с полушириной Γ_a , которая больше чем Γ_R и Γ_0 :

$$A(v) = \frac{K_1 \xi(v) \Gamma_a}{\pi} \frac{1}{\Gamma_a^2 + (v - v_R)^2}$$
(4)

где K_1 – лидарная константа на частоте v_0 лазерного излучения, измеренная экспериментально в [14] и $\xi(v_R)$ – относительная спектральная чувствительность фотоприёмника на частоте v_R излучения комбинационного рассеяния света [15]. С учётом этого перепишем уравнение (2) в виде

$$n(v,z) = \frac{B}{z^2} N(z) t_d I(v,z)$$
⁽⁵⁾

в этом выражении обозначена константа В как

$$B = \frac{c\tau_0}{2}S_0f \tag{6}$$

и некоторая функция *I(v,z)*, имеющая вид

$$I(v,z) = G(z)n_0 \int_{v_0-\Gamma}^{v_R+\Gamma_a} (d\sigma/d\Omega) \exp[-\int_0^z \{\alpha(v_0,r) + \alpha(v_R,r)\} dr] A(v') dv'$$
(7)

при условии, что $\Phi(v) = 1$, когда полуширина линии генерации много меньше, чем полуширина аппаратной функции лидара, что вполне допустимо для промышленных лазеров [1]. Сделаем некоторые преобразования, вынеся дифференциальное сечение комбинационного рассеяния света (оно выступает как молекулярная константа) и экспоненту из-под интеграла по частоте и получим

$$I(v,z) = G(z)n_0(d\sigma/d\Omega)\exp[-\int_0^z \{\alpha(v_0,r) + \alpha(v_R,r)\}dr]\int_{v_0-\Gamma}^{v_R+\Gamma_a} A(v')dv'$$
(8)

Последний интеграл от функции Лоренца в выбранном диапазоне интегрирования будет равен 0,5, поэтому значение $K_1\xi(v)$ надо умножить на это число. Тогда выражение (8) перепишем в виде

$$I(v,z) = G(z)n_0 (d\sigma/d\Omega)0.5K_1\xi(v) \exp[-\int_0^z \{\alpha(v_0,r) + \alpha(v_R,r)\}d$$
(9)

Теперь из уравнения (5) выразим концентрацию N(z) в виде

$$N(z) = \frac{n(v,z)z^2}{Bt_d I(v,z)}$$
(10)

с учётом (6) и (9).

Результаты моделирования

Будем рассматривать однократное комбинационное рассеяние света и однородную атмосферу [1, 12, 16]. Значение максимума полосы валентных НF колебаний молекулы фторгидрида взято из [1, 3, 9, 17] и равно 3959 см⁻¹.или частоты 118,77 ГГц Значения дифференциального сечения колебательного комбинационного рассеяния света молекулы фторгидрида ($d\sigma/d\Omega$) для выбранных длин волн лазерного излучения 405, 532 и 650 нм были оценены по данным [17] и получено значение 2,98×10⁻³⁰ см², а рассчитанные с учётом зависимости 1/ λ^4 для интересующих нас длин волн значения приведены в табл. 1. Значения коэффициентов ослабления для этих частот $\alpha(v_0,z)$ и $\alpha(v,z)$ из [14, 15] также собраны в табл. 1.

Поперечное сечение зеркала приемного телескопа лидара было 0,12 м². а шаг по расстоянию – 7,5 м для времени одного измерения 50 нс, за которое может быть зарегистрировано 200 фотонов.

На первом этапе рассмотрим численное решение уравнения (10) полагая, что G(z) в нашем случае равно 1 и время измерения для нашей экспериментальной ситуации $t_d = 100$ с.

Для такого случая выполним численное решение уравнения (10) для трех значений длин волн лазерного излучения 405, 532 и 650 нм и диапазона расстояния зондирования от 100 до 1500 м. Результаты решения уравнения (10) для этого случая представлены на рис. 2.

На графике рис. 2 видно увеличение концентрации исследуемых молекул гидрофторида в ряду длин волн лазерного излучения 405–532–650 нм за счёт сильной спектральной зависимости величин, входящих в уравнение (10), при этом величина концентрации резко нарастает за первые 500 м примерно на 1,5 порядка. Минимальное значение концентрации молекул фторгидрида 1,88 10¹³ см⁻³ можно получить на длине волны 405 нм для 100 м, для расстояния зондирования 500 м это значение – 5,56 10¹⁴ см⁻³, для 1000 м – 2,74 10¹⁵ см⁻³, а

для 1500 м $-7,64 \ 10^{15} \text{ см}^{-3}$ при частоте следования лазерных импульсов 1 МГц и времени одного измерения 50 нс или шага по высоте $\Delta z = 7,5$ м.

Таблица 1

Длины волн и частоты лазерного излучения и полос комбинационного рассеяния света молекул фторгидрида, дифференциальные сечения колебательного комбинационного рассеяния света для этих полос, коэффициенты ослабления в атмосфере на этих длинах волн и относительная спектральная чувствительность фотоприемника

Длина	Частота,	Дифферен-	Коэффици-	Коэффици-	Относительная
волны,	ν, ГГц	циальное	ент	ент	спектральная
λ, нм		сечение КРС	ослабления	ослабления	чувствитель-
		$(d\sigma/d\Omega)$	$\alpha(v_0, r), \kappa M$	$\alpha(v_R, r), \kappa M$	ность
		10^{30} cm^2	1	1	фотоприемника
					ξ(ν)
650	461,54	0.60	0.14		
875.2	342.78			0.12	0.2
532	563.91	1.34	0.16		
673.9	445.17			0.14	0.5
405	740.74	4.00	0.24		
482.3	622.02			0.18	0.8

концентрации молекул фторгидрида N(z) (в логарифмическом масштабе, в см⁻³) от расстояния z (в м) для длин волн лазерного излучения 405 (1), 532 (2) и 655 (3) нм при зондировании в атмосфере лидаром комбинационного рассеяния света

Очевидно, что дальнейшее уменьшение величины концентрации исследуемых молекул возможно за счёт увеличения времени измерения t_d и частоты следования лазерных импульсов f или увеличения их энергии E_0 .

Далее, решая уравнение (10) относительно времени измерения t_d , промоделируем его зависимость от длины волны лазерного излучения для концентрации исследуемых молекул на уровне ПДК $N=1.5 \ 10^{14} \text{ см}^{-3}$. Результаты моделирования представлены на рис. 3.

Как видно из графиков рисунка 3 минимальное время измерения получено для длины волны 405 нм лазерного излучения и всех расстояний зондирования. Причём концентрацию на уровне ПДК можно измерить до расстояния зондирования 600 м, а для измерения такой же концентрации на расстоянии 1500 м требуется почти 17 мин. На длине волны 532 нм можно измерить за время порядка 100 с только до 200 м, а на 650 нм – 150 м.

Таким образом, результаты компьютерного моделирования позволяют выбрать длину волны лазерного излучения и минимальное время для измерения заданной концентрации молекул фторгидрида.

Заключение

Следовательно, при зондировании молекул фторгидрида в атмосферном пограничном слое лидаром комбинационного рассеяния света можно выбрать параметры лазерного излучения и лидара для измерения заданной концентрации молекул на уровне порядка ПДК или 1,5·10¹⁴ см⁻³.

Причём на длине волны лазерного излучения 405 нм на расстоянии зондирования 100 м можно получить минимальное значение концентрации молекул фторгидрида 1,88 10¹³ см⁻³, а для расстояния зондирования 1500 м – уже 7,64 10¹⁵ см⁻³ для нашего варианта лидара.

На этой длине волны лазерного излучения за время 100 с можно измерить концентрацию на уровне ПДК на расстоянии зондирования до 600 м, а для измерения такой же концентрации на расстоянии 1500 м требуется почти 17 мин. На длине волны 532 нм можно измерить за время порядка 100 с только до 200 м, а на 650 нм – 150 м, соответственно.

Таким образом, результаты компьютерного моделирования позволяют выбрать оптимальную длину волны лазерного излучения для получения минимального времени и измерения заданной концентрации молекул фторгидрида.

Конфликт интересов

Авторы статьи заявляют, что у них нет конфликта интересов по материалам данной статьи с третьими лицами, на момент подачи статьи в редакцию журнала, и им ничего не известно о возможных конфликтах интересов в настоящем со стороны третьих лиц.

Список литературы

1. Привалов В. Е., Фотиади А. Э., Шеманин В. Г. Лазеры и экологический мониторинг атмосферы. С-Пб.: Лань. 2013

2. Гигиенические нормативы ГН 2.1.6.3492-17 (с изменениями на 31 мая 2018 года). Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе городских и сельских поселений.

3. Privalov V. E., Voronina E. I., Shemanin V. G. // Optical Memory & Neural Networks (Information Optics) / 2008. V. 17. No. 1. P. 43–51.

4. Privalov V. E., Shemanin V. G. // Proceedings of SPIE. 3rd International Workshop on Nondestructive Testing and Computer Simulation in Sciences and Engineering. 2000. P.2–11.

5. Привалов В. Е., Шеманин В. Г. // Оптика и спектроскопия. 2017. Т. 123.-№ 6. С. 941–946.

6. Dyachenko V. V., Privalov V. E., Shemanin V. G. // Optical Memory and Neural Networks. 2022. V. 31. No. 1. P. 36–45.

7. Привалов В. Е., Шеманин В. Г. // Оптика и спектроскопия. 2022. Т. 130.№ 3. С. 395–399 DOI: 10.21883/OS.2022.03.52168.2707-21

8. Privalov V. E., Shemanin V. G. // Russian Physics Journal. 2022. V. 65. No. 2. P. 365–374. DOI 10.1007/s11182-022-02644-y

9. В. Е. Привалов, В. Г. Шеманин. Фотоника. 2011. № 4. С. 44–47.

10. Привалов В. Е., Шеманин В. Г. // Известия РАН. Серия физическая. 2015. Т. 79. № 2. С. 170–180.

11. Креков Г. М., Крекова М. М., Суханов А. Я., Лысенко А. А. // Письма в ЖТФ. 2009. Т. 35. вып. 15. С. 8–15.

12. Межерис Р. Лазерное дистанционное зондирование. М.: Мир. 1987. 550 с.

13. Долгих Г.И., Привалов В.Е. Лазеры. Лазерные системы. Владивосток: Изд. Дальнаука. 2009. 202 с.

14. Привалов В. Е., Шеманин В. Г. Параметры лидаров для дистанционного зондирования газовых молекул и аэрозоля в атмосфере. С-Пб.: Балт. ГТУ. 2001. С. 23, 30–32.

15. Справочник по лазерам. / Под ред. А. М. Прохорова Т. І. М.: Советское Радио. 1978. С. 380–382.

16. Привалов В. Е., Шеманин В. Г. // Оптика и спектроскопия. 2018. Т. 125. № 4. С. 568–571.

17. Лазерный контроль атмосферы / Под. ред. Э. Д. Хинкли. М.: Мир. 1979.

Lidar measurements of the concentration of fluorohydride molecules in the atmospheric boundary layer

^{1*} Shemanin V. G., ² Voronina E. I., ² Avdonkin A. S.

 ¹ Branch of the Belgorod State Technological University named after V. G. Shukhov in Novorossiysk, 353919, Novorossiysk, st. Myskhakskoe highway, 75, Russian Federation
 ² Novorossiysk Polytechnic Institute (branch) of the Kuban State Technological University, 353900, Novorossiysk, st. K. Marx, 20, Russian Federation

The possibility of measuring concentrations of fluorohydride molecules in the range of $10^{13}...10^{17}$ cm⁻³ in the atmosphere with a Raman lidar during sounding at distances of up to 1.5 km was performed. It was found that at a laser radiation wavelength of 405 nm at a probing distance of 100 m, one can obtain the minimum concentration of fluorohydride molecules of 1.88 10^{13} cm⁻³, and for a probing distance of 1500 m – already 7.64 10^{15} cm⁻³ for our version of the lidar. In addition, at this wavelength of laser radiation, a concentration of 1.5 10^{14} cm⁻³ can be measured in 100 s at a probing distance of up to 600 m, and it takes almost 17 minutes to measure the same concentration at a distance of 1500 m.

Key words: Raman lidar, fluorohydride molecule, concentration, measurement time, probing distance.