The laser disdrometer capabilities for determining the kinetic energy of rainfall

Authors

  • V. V. Kalchikhin Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences
  • A. A. Kobzev Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences
  • A. A. Tikhomirov Institute of Monitoring of Climatic and Ecological Systems, Siberian Branch of the Russian Academy of Sciences

Keywords:

laser disdrometer, rainfall, kinetic energy, microstructural characteristics of precipitation, measurements

Abstract

The methods of measuring the kinetic energy (KE) of intense rainfall, which damage agriculture, provoke landslides, and also cause erosion of the surface of various technical devices, are considered. The method for determining the KE based on measuring the microstructural characteristics of rainfall (size, number of particles and their falling velocities) were obtained using the laser disdrometer is presented. The possibilities of method used are justified by the results of measuring the characteristics of a heavy shower at Tomsk in the summer of 2023. The influence of the microstructural characteristics of raindrops on the amount of KE brought to the underlying surface is analyzed. The results of the KE determination are compared with the values obtained using simplified methods.

References

Kalchikhin V. V., Kobzev A. A., Korolkov V. A., Tikhomirov A. A. Instrumentation for measurement of the parameters of atmospheric recipitation. Current state // Russian Physics Journal. 2009. V. 52. No 12. p. 92 (dep. In VINITI. 16.12.09, № 802-В2009). (in Russian)].

Voskanyan K .L., Kuznetsov A. D., Serouhova O. S. Automatic weather stations. Part 1: Performance characteristics. Tutorial. — St. Petersburg, RSHU Publishers, 2016. 170 p. (in Russian).

Schönhuber M., Lammer G., Randeu W. L. Ch. 1. The 2D-Video-Disdrometer // Precipitation: Advances in Measurement, Estimation and Prediction / Ed. by Silas Michaelides. Berlin Heidelberg: Springer-Verlag, 2008. p. 3–32.

Azbukin A. A., Kalchikhin V. V., Kobzev A. A., Korolkov V. A., Tikhomirov A. A. Determination of Calibration Parameters of an Optoelectronic Precipitation Gage // Atmospheric and Oceanic Optics. 2014. V. 27. No 5. P. 432–437. DOI: 10.1134/S1024856014050066.

Kalchikhin V. V., Kobzev A. A., Korolkov V. A., Tikhomirov A. A., Filatov D. E. Laser Meter for Integral and Microstructural Characteristics of Atmospheric Precipitation OPTIOS // Lasers. Measurements. Information. 2021. V. 1. No 1. p. 23-32. (in Russian).

Angulo-Martinez M., Begueria S., Latorre B., Fernandez-Raga M. Comparison of precipitation measurements by OTT Parsivel2 and Thies LPM optical disdrometers // Hydrol. Earth Syst. Sc. 2018. V. 22, iss. 5. p. 2811–2837. DOI: 10.5194/hess-22-2811-2018.

Ferro V., Carollo F. G., Serio M. A. Establishing a threshold for rainfall-induced landslides by a kinetic energy–duration relationship // Hydrol. Process. 2020. V. 34, iss. 16. p. 3571–3581. DOI: 10.1002/hyp.13821.

Angel J. R., Palecki M. A. Hollinger S. E. Storm Precipitation in the United States. Part II: Soil Erosion Characteristics // J. Appl. Meteorol. 2005. V. 44, No 6. p. 947–959. DOI: 10.1175/JAM2242.1.

Angulo-Martinez M., Barros A. Measurement uncertainty in rainfall kinetic energy and intensity relationships for soil erosion studies: An evaluation using PARSIVEL disdrometers in the Southern Appalachian Mountains // Geomorphology. 2015. V. 228. p. 28–40. DOI: 10.1016/j.geomorph.2014.07.036.

Jose J., Gires A., Tchiguirinskaia I., Roustan Y., Schertzer D. Scale invariant relationship between rainfall kinetic energy and intensity in Paris region: An evaluation using universal multifractal framework // J. Hydrol. 2022. V. 609. No 6. 127715. DOI: 10.1016/j.jhydrol.2022.127715.

Keegan M. H., Nash D. H., Stack M. M. On erosion issues associated with the leading edge of wind turbine blades. // J. Phys. D: Appl. Phys. 2013. V. 46, No 38. P. 383001. DOI: 10.1088/0022-3727/46/38/383001.

Herring R., Dyer K., Martin F., Ward C. The increasing importance of leading edge erosion and a review of existing protection solutions // Renew. Sustain. Energy Rev. 2019. V. 115, No 11. p. 109382. DOI: 10.1016/j.rser.2019.10938212.

Fornis R. L., Vermeulen H. R., Nieuwenhuis J. D. Kinetic energy–rainfall intensity relationship for Central Cebu, Philippines for soil erosion studies // J. Hydrol. 2005. V. 300, iss. 1–4. p. 20–32. DOI: 10.1016/j.jhydrol.2004.04.027.

Mikos M., Jost D., Petkovsek G. Rainfall and runoff erosivity in the alpine climate of north Slovenia: a comparison of different estimation methods // Hydrolog. Sci. J. 2006. V. 51, iss. 1. p. 115–126. DOI: 10.1623/hysj.51.1.115.

Lobo G. P., Bonilla C. A. Sensitivity analysis of kinetic energy-intensity relationships and maximum rainfall intensities on rainfall erosivity using a long-term precipitation dataset // J. Hydrol. 2015. V. 527, No 8. p. 788–793. DOI: 0.1016/j.jhydrol.2015.05.045.

Sanchez-Moreno J. F., Mannaerts C. M., Jetten V., Loffler-Mang M. Rainfall kinetic energy–intensity and rainfall momentum–intensity relationships for Cape Verde // J. Hydrol. 2012. V. 454–455. P. 131–140. DOI: 10.1016/j.jhydrol.2012.06.007.

Salles Ch., Poesen J., Torres D. S. Kinetic energy of rain and its functional relationship with intensity // J. Hydrol. 2002. V. 257, iss. 1–4. p. 256–270. DOI: 10.1016/S0022-1694(01)00555-8.

Wischmeier W. H., Smith D. D. Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. US Department of Agriculture Handbook, No 537, Washington DC, 1978. 60 p.

van Dijk A., Bruijnzeel L. A., Rosewell C. J. Rainfall intensity-kinetic energy relationships: A critical literature appraisal // J. Hydrology. 2002. V. 261, iss. 1–4. p. 1–23. DOI: 10.1016/S0022-1694(02)00020-3.

Torres D. S., Salles C., Creutin J. D., Delrieu G. Quantification of soil detachment by raindrop impact: performance of classical formulae of kinetic energy in Mediterranean storms: Proceedings of the Oslo Symposium // Erosion and Sediment Transport Monitoring Programmes in River Basins. Oslo, August, 1992. IAHS Publ. no. 210, 1992. p. 115–124.

Angulo-Martinez M., Begueria S., Kysely J. Use of disdrometer data to evaluate the relation-ship of rainfall kinetic energy and intensity (KE-I) // Sci. Total Environ. 2016. V. 568. p. 83–94. DOI: 10.1016/j.scitotenv.2016.05.223.

Kal’chikhin V. V., Kobzev A. A., Korol’kov V. A., Tikhomirov A. A. Determination of the Rate of Fall of Rain Drops in Measurements of Their Parameters by an Optical Rain Gauge // Meas. Tech. 2017. V. 59, No 11. p. 1175–1180. DOI 10.1007/s11018-017-1111-9.

Johannsen L. L., Zambon N., Strauss P., Dostal T., Neumann M., Zumr D., Cochrane T. A., Bloschl G., Klik A. Comparison of three types of laser optical disdrometers under natural rainfall conditions // Hydrolog. Sci. J. 2020. V. 65, No 4. p. 524–535. DOI: 10.1080/02626667.2019.1709641.

Kalchikhin V. V., Kobzev A. A., Tikhomirov A. A., Filatov D. E. Rainfall Measurements during Summer 2020 with the Optical Precipitation Gage // Atmos. Ocean. Opt. 2021. V. 34, No 3. p. 278–281. DOI: 10.1134/S1024856021030052.

Nyssen J., Vandenreyken H., Poesen J., Moeyersons J., Deckers J., Haile M., Salles C., Govers G. Rainfall erosivity and variability in the Northern Ethiopian Highlands // J. Hydrol. 2005. V. 311, iss. 1–4. p. 172–187. DOI: 10.1016/j.jhydrol.2004.12.016.

Kalchikhin V. V., Kobzev A. A., Tikhomirov A. A. Determination of the energy characteristics of rainfall using the optical precipitation gauge // Opt. Atm. Okeana. 2024. V. 37. No 3. P. 262–269. DOI: 10.15372/AOO20240310.

Published

2024-06-05

How to Cite

Кальчихин, В. В., Кобзев, А. А., & Тихомиров, А. А. (2024). The laser disdrometer capabilities for determining the kinetic energy of rainfall. Lasers. Measurements. Information, 4(1), 4-15. Retrieved from https://lasers-measurement-information.ru/ojs/index.php/laser/article/view/81

Issue

Section

Laser and optical measurements